THE BIG SWITCH

1.1 Net zero and the big switch

Figure A. To support net zero, household energy use will shift away from natural gas and gasoline toward electricity

1.2 The stakes in transforming Canada’s electricity systems

Figure B. Four waves of Indigenous clean energy participation

POWERING THE SWITCH:

Bigger, cleaner, and smarter electricity systems

2.1 Bigger

Figure C. Canada’s electricity systems need to get bigger, cleaner, and smarter

2.2 Cleaner

Figure D. Canada’s electricity systems need to get bigger

2.3 Smarter

Figure E. Canada’s electricity systems need to get cleaner

2.4 Takeaways for Canada

FLIPPING THE SWITCH:

Policy recommendations for electric federalism

3.1 Four challenges in aligning electricity systems with net zero

Figure G. Canadians will spend less of their income on energy, but without a new approach, electricity rates could still go up

3.2 Recommendations for building electric federalism

3.3 Tying provincial, territorial, and federal actions together

Figure H. Using electric federalism to power Canada’s big switch

Annex

Acknowledgments

References
The big switch

Clean electricity will power Canada’s net zero transition.

Reaching Canada’s climate targets requires a big switch from fossil fuel energy to clean electricity. This switch involves producing more clean electricity in every region, phasing out greenhouse gas-emitting sources, and using clean electricity to power more and more of our homes, vehicles, businesses, and industries. It will underpin Canada’s climate progress and power Canada’s future prosperity.

Getting there, however, will require governments at all orders to leverage their policy tools—ideally in a coordinated way.

The Canadian Climate Institute’s electricity project—including this summary report and the two detailed reports on which it’s based—explores both the technical and policy changes needed to align Canada’s electricity systems with net zero, detailing the technologies needed to build electricity systems that are bigger, cleaner, and smarter (Section 2), and identifying the policies needed to bring about an electric federalism that can drive Canada’s big switch (Section 3).
1.1 **Net zero and the big switch**

In our 2021 report *Canada’s Net Zero Future*, the Canadian Climate Institute found that clean electricity and electrification—substituting fossil fuels with clean electricity to power more and more of our economy—underpin all credible economy-wide pathways to net zero (Dion et al. 2021). We found that electricity will play a central and driving role even under best-case scenarios for emerging alternative technologies. Similar studies in Canada and abroad confirm the importance of electricity in achieving net zero (EPRI 2021; ETC 2021; IEA 2021; Langlois-Bertrand et al. 2021).

This *big switch* is key to reaching Canada’s climate goals: getting this right makes everything else that’s required for Canada’s net zero transition much more possible, affordable, and broadly beneficial.

The big switch means producing a lot more clean electricity, for two reasons. One is to replace unabated coal and natural-gas-fired electricity as they are phased out. The other is to meet the growing need for clean electricity as Canadians switch from gasoline-powered vehicles to electric vehicles, gas stoves to induction stoves, and natural gas furnaces and boilers to heat pumps and electric furnaces. (See Figure A for the impact these changes will have on household energy sources.)

In addition to making electricity systems bigger and cleaner, the big switch also requires making them smarter. This means making both supply and demand more flexible to support more variable supply such as solar and wind and to respond to changing weather conditions and disruptions—including from extreme weather events driven by climate change (Clark and Kanduth 2022).
1.2 The stakes in transforming Canada’s electricity systems

Because the switch we’re discussing impacts how nearly every Canadian household and business will use energy, the policy choices that Canadian governments make to align electricity systems with net zero are extremely consequential. Getting it right—or wrong—will have big implications far beyond the electricity sector, for the reasons that follow.

1. Multiple studies have reached the same conclusion: Acting early with smart policies can significantly reduce overall costs and make achieving net zero easier. Electricity transformations will require significant capital investment. Early and effective action, including initiatives to make electricity systems more resilient to
the effects of climate change, allows Canada to avoid a more difficult transition later, which would entail higher consumer prices from stranded assets and from underbuilt systems struggling to keep up with growing demand. Acting now also reduces overall costs by driving innovation, which can improve the cost and availability of important technologies and accelerate learning curves through deployment and use. Finally, the federal government’s 2035 deadline for achieving a net zero electricity system leaves no room for delay.

2. **Strategic action today can unlock clean growth opportunities.** According to the Climate Institute report *Sink or Swim* (Samson et al. 2021), Canadian companies active in low-carbon electricity, batteries and storage, and solar and wind equipment are well-positioned to grow in the global low-carbon transition. New sources of transition-consistent growth can offer export opportunities, employment, and prosperity for Canadians.

3. **Electricity system transformations can be pursued in ways that support equity.** Absent equity-focused policy interventions, utilities’ investments in new technologies and infrastructure upgrades could increase electricity rates in ways that disproportionately impact lower-income households. Ensuring rates remain reasonable for low-income households (alongside measures to support households’ ability to adopt electrification technologies) could help address these potential inequities.

4. **Catalyzing Indigenous participation and leadership can support Indigenous self-determination and reconciliation.** Indigenous communities, governments, and organizations across Canada have positioned themselves as leaders in Canada’s clean energy transition. Clean energy projects represent an important means of advancing not only energy transition but reconciliation and the rights and well-being of Indigenous Peoples. As Indigenous Clean Energy describes in *Waves of Change: Indigenous clean energy leadership for Canada’s clean, electric future*, the next wave of Indigenous participation and leadership in the sector will present significant new opportunities for Indigenous communities in Canada (see *Figure B*) (ICE 2022).

While the stakes are high, Canada is fortunate to have significant advantages to draw on in this transition. Over 80 per cent of electricity
production in Canada is already non-emitting, in significant part due to the country’s abundant hydroelectric resources (Statistics Canada 2022). And electricity systems across the country are supported by robust institutions and structures that deliver electricity that is reliable and affordable by most international standards. Building on these advantages can ensure Canada meets its climate goals while strategically positioning its economy to succeed in the global low-carbon transition.

That doesn’t mean that the big switch will be easy. Building out bigger, cleaner, and smarter electricity systems in every province and territory is a massive undertaking. Doing so will require grappling with the fact that different provinces and territories have unique electricity systems that face unique challenges. And it will require implementing policies that create outcomes that are effective, cost-effective, and fair.
Powering the switch: Bigger, cleaner, and smarter electricity systems

This section summarizes the findings of our technical report Bigger, Cleaner, Smarter, describing the changes needed in Canada’s electricity systems to align them with net zero. Our report draws on a review of the most significant recent studies of electricity system transformation in Canada, as well as our project’s widespread consultation with experts, thought leaders, and practitioners (see Annex). Overall, we find that transformation of electricity systems is both achievable and necessary to support the goal of net zero emissions economy-wide by 2050. In particular, aligning electricity systems with net zero requires attention to all three changes—bigger, cleaner, and smarter—not just the most obvious change of becoming cleaner (i.e., getting electricity generation to net zero). (See Figure C.)

We unpack each of these changes below.
Canada’s electricity systems need to get ...

BIGGER

Electricity generation capacity needs to grow 2.2 to 3.4 times bigger than today.

2010 2020 2050

CLEANER

By 2050, wind and solar will make up 31-75% of generation compared to only 6% today.

Projections for shares of electricity generation by type.

2020 2035 2050

SMARTER

Canada needs to deploy a range of solutions to build smarter, more flexible systems.

- **SUPPLY-SIDE SOLUTIONS**
- **DEMAND-SIDE SOLUTIONS**
- **GRID SOLUTIONS**
- **STORAGE SOLUTIONS**
2.1 Bigger

Making electricity systems bigger means growing them so they can meet the increased demand created by widespread electrification. Specifically, studies show that electricity demand will be 1.6 to 2.1 times larger in 2050 compared to today, on a path to net zero. Meanwhile, the capacity of Canadian electricity systems—the maximum amount of electricity that a system can technically produce—needs to grow even more, at least doubling, if not more than tripling, over the same time frame. Aggressive improvements in energy efficiency are needed so Canada’s electricity systems meet electricity demand that is “right sized.” Yet even with significant efficiency improvements, electricity systems must grow substantially for a net zero world. In fact, Canada must, on average, grow system capacity at a rate 3 to 6 times faster to 2050 compared to the previous decade, in order to support rising electricity demand associated with net zero (see Figure D).

1. Generation capacity or simply capacity is the maximum amount of electricity that a generator or system can produce, measured in watts (e.g. MW, kW). It measures the technical capability to produce electricity. This stands in contrast to generation, which refers to the actual amount of electricity produced during a certain time period, measured in watt-hours (e.g. kWh, MWh). Capacity grows more than generation (and demand) in large part because future electricity systems will have higher shares of solar and wind, which require more capacity to produce the same amount of electricity compared to thermal sources because of their greater variability.
2.2 Cleaner

Making electricity systems cleaner consists of three broad elements (see Figure E). The first is the phase-out of generation from unabated fossil fuels, which studies show will make up no more than one per cent of total generation by 2050. Second, to replace these sources and grow systems further, accelerating growth of non-emitting electricity—especially solar and wind—is central. For instance, studies show that to support net zero, 60–95 per cent of new capacity added by 2030 must come from solar and wind. Third, hydro and nuclear power will need to maintain their important roles; otherwise, other sources of non-emitting electricity must grow even more. Several nascent technologies have high potential. These include carbon capture, utilization, and storage applied to emitting generation; small modular reactors; and hydrogen-fired electricity generation. However, there is higher uncertainty around their future role.
2.3 **Smarter**

Making systems smarter entails deploying a range of solutions so systems can become more flexible to support more solar and wind—as well as more resilient to the effects of climate change (Clark and Kanduth 2022). Supply-side sources of flexibility that can generate power on demand (hydropower in particular) will play a critical role. But other types of flexibility solutions will grow in importance on the path to net zero. Making demand for electricity more flexible, balancing out the grid with a range of sources of non-emitting electricity, scaling up the deployment of electricity storage, and enhancing integration across regions and trade of electricity through interties can all play valuable roles in a net zero future (see Figure F). Many of the key flexibility technologies are commercially available today. And their costs continue to fall.

FIGURE F.

Canada’s electricity systems need to get **SMARTER**

Smarter, more flexible systems can support more wind and solar and improve climate resilience

- **SUPPLY-SIDE SOLUTIONS**
 - Maximizing the flexibility and predictability of variable renewables
 - Optimizing existing hydropower resource to complement variable supply
 - Deploying emerging sources of non-emitting, dispatchable power

- **DEMAND-SIDE SOLUTIONS**
 - Enhancing demand-side flexibility

- **GRID SOLUTIONS**
 - Expanding grid integration across regions

- **STORAGE SOLUTIONS**
 - Deploying short-term grid-scale storage
 - Deploying long-term grid-scale storage
2.4 Takeaways for Canada

Here are four takeaways from this analysis that inform the policy recommendations provided in Section 3:

1. **Aligning electricity systems with net zero is both necessary and achievable.** Making electricity systems bigger, cleaner, and smarter is technically and economically feasible. The resulting systems can reliably and affordably power Canada’s economy. Moreover, because electricity underpins decarbonization across the economy, a broader transition to net zero would be far more challenging absent a transformation of electricity systems.

2. **Transformations will vary across Canada:** regions without abundant hydropower resources face different challenges than those that are hydropower-rich. The presence or absence of significant hydroelectricity resources has a particularly strong impact on the challenges each region will face. Regions without significant hydropower face challenges of decarbonizing existing supply in addition to growing their systems. And not having significant hydroelectricity as a domestic source of dispatchable power means they need to rely more on other sources of flexibility.

3. **Some solutions face technological barriers, while many others face social, political, or institutional ones.** Technological readiness is an important challenge for the advancement of some solutions, such as carbon capture, utilization, and storage and small modular reactors. But some of the most significant barriers to other solutions are social and institutional in nature (e.g., barriers to interregional grid integration, community acceptance of local renewable energy development). Policy to support the transformation of electricity systems needs to address both the technical and non-technical barriers to the deployment and uptake of key solutions (Turner 2021).

4. **Governments have a driving role in these transformations.** To advance the critical challenge of making electricity systems bigger, cleaner, and smarter, policy interventions from different orders of government will be required. Provincial and territorial governments are central in developing policy, given their authority over electricity systems, while the federal government can set the national policy framework and act as an enabler of regional
progress. Meaningful involvement of Indigenous Peoples in policy making and key decisions will also be required to achieve successful transformations and to ensure Indigenous Peoples continue to take a leading role in identifying and seizing clean energy opportunities (ICE 2022).

The key takeaways are these: the changes that are needed to align Canada’s electricity systems with net zero are clear, acting quickly is much better than acting slowly, and the technical solutions required are already available. The most important thing now is that Canada gets on with the task ahead: building clean supply, especially solar, wind, and storage; phasing out generation from unabated fossil fuels; and making systems more flexible. Moving rapidly toward net zero requires that policy makers recognize the centrality of clean electricity in getting Canada there, and act accordingly.

The next section presents a policy package designed to do just that.
This section summarizes the findings and recommendations from our second report, *Electric Federalism*, which identifies how Canadian governments can drive the transformations required in electricity systems across the country to achieve net zero. We identify four key challenges and outline the policy solutions that can overcome them. To create an affordable, reliable electricity system that is consistent with net zero, provincial, territorial, and federal governments should work together.

3.1 Four challenges in aligning electricity systems with net zero

1. **Federal climate policy in the electricity sector is not currently aligned with net zero goals.** Canada has set a target of reaching net zero emissions in the electricity sector by 2035 and in the economy more broadly by 2050. While governments across Canada have made significant progress toward these goals, significant gaps remain—especially regarding how policies are applied in the electricity sector. Federal climate policy in the electricity sector (in particular, the output-based treatment of electricity under federal carbon pricing) does not provide sufficient incentives for non-emitting generation and has weak incentives to ramp down use of unabated natural gas-fired electricity. It also does not rule out the construction of new gas-fired capacity,
which would risk becoming a stranded asset and could put climate targets out of reach.

2. Creating resilient electricity systems aligned with net zero could put upward pressure on electricity rates. While rising expenditure on electricity would be offset by falling expenditures on other types of energy, electricity rates might still increase in some regions under some scenarios (see Figure G).

FIGURE G.

Canadians will spend less of their income on energy, but without a new approach, electricity rates could still go up

Energy will become cheaper for Canadians overall...

...but the impact on the price of electricity may vary from province to province.

Currently relies on:

<table>
<thead>
<tr>
<th>Hydroelectric generation</th>
<th>Thermal electricity generation (coal, natural gas, or nuclear)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC</td>
<td>11.1 12.8</td>
</tr>
<tr>
<td>AB</td>
<td>12.8 15.6</td>
</tr>
<tr>
<td>SK</td>
<td>17.3 20.2</td>
</tr>
<tr>
<td>MB</td>
<td>9.3 12.5</td>
</tr>
<tr>
<td>ON</td>
<td>14.0 17.6</td>
</tr>
<tr>
<td>QC</td>
<td>8.0 12.1</td>
</tr>
<tr>
<td>NB</td>
<td>12.3 15.4</td>
</tr>
<tr>
<td>PEI</td>
<td>16.8 18.7</td>
</tr>
<tr>
<td>NL</td>
<td>16.2 16.0</td>
</tr>
</tbody>
</table>

Projections show that households across all income groups in Canada will see falling overall energy costs as a share of income — even as their use of electricity rises.

Sources: Dion et al. (2021); Dolter, Winter, and Guertin (2022).
This risk raises a number of concerns. Higher rates may disproportionately impact lower-income ratepayers, potentially exacerbating energy poverty. Investment costs may be unevenly distributed across regions, with residents in provinces and territories that rely on fossil fuel generation experiencing higher rate increases. Higher rates could also undermine the economic case for end-use electrification, which is critical to achieving net zero. And, critically, rising rates could undermine public and political support for the broader net zero transition. For these reasons, proactively mitigating potential upward pressure on rates can support a smooth net zero transition.

3. **Provincial and territorial policies and institutions are not sufficiently coordinated with net zero.** To align electricity systems with net zero goals, provincial and territorial policies and institutions—including regulators, system operators, and public utilities—must be coordinated with this goal. Yet, their mandates as they relate to climate change are often unstated or ambiguous and can be interpreted as being at odds with net zero investments. The most direct way to address this would be for federal, provincial, and territorial governments to provide greater policy certainty to 2050. However, gaps between existing policy and long-term goals are likely to persist. This poses a significant challenge, as regulators and other provincial institutions are not in a position to make assumptions or decisions about governments’ future climate policy.

4. **Incentives for interregional coordination and interties are weak.** In Canada’s decentralized federation, electricity systems are managed by provinces and territories, and there is no central governing authority. While enhanced integration and coordination between neighbouring electricity systems represents a cost-effective path to aligning Canada’s electricity systems with net zero, systems remain largely siloed. In addition, a number of formal and informal barriers to integration exist in provinces and territories, including policies that limit or disincentivize interregional integration and trade, institutional cultures that undervalue coordination, and simple inertia.
3.2 **Recommendations for building electric federalism**

To address these four challenges, both federal and provincial/territorial orders of government have policy levers they can pull. Addressing the full set of challenges and successfully aligning Canadian electricity systems with net zero requires policy to be implemented by both of these orders of government, ideally in a coordinated way.

We have identified five key recommendations for how provincial, territorial, and federal governments can apply their respective policy levers to transform Canadian electricity systems. These recommendations are discussed in more detail in the *Electric Federalism report*.

A. The federal government should strengthen climate policies in the electricity sector

First, the federal government should strengthen federal carbon pricing policy by doing away with the output-based pricing system in the electricity sector and returning all carbon price revenues from electricity to provincial and territorial ratepayers. This approach would strengthen emissions reduction incentives while both protecting consumers and avoiding large interprovincial transfers.

Second, the federal government should employ a clean electricity standard alongside strengthened carbon pricing to support the switch to non-emitting electricity sources and ensure delivery on the 2035 net zero target. Such a standard should rule out construction of new gas-fired capacity and ensure that all generation is net zero as of 2035, while still letting market incentives from carbon pricing play a driving role in delivering cost-effective emissions reductions.

B. Federal, provincial, and territorial governments should leverage public funds to defray the costs of electricity system investments for ratepayers

The real or perceived risks of rising electricity rates could create challenges for electricity system transformations and the larger net zero transition. To mitigate these risks, federal, provincial, and territorial governments should use funds from their respective tax bases to defray the costs of electricity system investments for ratepayers.
Governments could provide support that would defray rate pressures in general, as well as in targeted ways that reduce costs for households experiencing, or at risk of, energy poverty.

Governments can provide these supports in a number of ways. For example, they could fund research, development, and demonstration projects; provide tax credits; co-fund large projects or infrastructure; or simply provide support directly to ratepayers. Providing subsidies can have pitfalls, particularly when they are not targeted at a clear market barrier (Ragan et al. 2017). But these challenges can be avoided when subsidies are coupled with the governance reforms in our next recommendation, which would help ensure investments defray costs for ratepayers in ways that are future-focused and cost-effective.

There are strong arguments to support government investment in electricity systems. First, since investments targeting emissions reductions benefit society broadly rather than just ratepayers alone, there is a case for sharing the costs more broadly as well. Second, governments are investing in a type of critical public infrastructure that will only grow in importance in a low-carbon world. And third, tax systems tend to be more progressive than ratepayer cost recovery, offering a fairer way of bearing investment costs. In addition, federal investment can provide an equalizing function, where provinces and territories that face the most costly transitions see greater benefits from federal support.

C. Provincial and territorial governments should flex their policy muscles to drive transformation of their electricity systems

Provincial and territorial governments can take considerable leadership in transforming their electricity systems, since they control many of the key policy levers. First, provinces and territories should implement their own carbon pricing policies and performance standards through equivalency agreements, so that they can implement policy that makes sense within their unique regional context. Second, they should issue directives and legislation mandating that regulators, public utilities, and system operators pursue climate goals. Third, to enable these actors to fulfil their updated mandates, provincial and territorial governments should develop comprehensive energy plans and commission independent pathway assessments to guide their work. Finally, provincial and territorial governments should remove or address formal and informal barriers to integration, including self-suf-
ficiency mandates, policies that disincentivize interregional integration and trade, and institutional culture and inertia.

D. Both orders of government should pursue greater coordination and integration using their respective policy tools

Nordic countries have successfully pursued greater coordination and integration of their electricity markets (McCarthy 2022). Canadian provinces and territories should similarly work bilaterally and multilaterally to integrate their electricity sectors, both by removing formal and informal barriers to integration and through new projects or planning initiatives. The federal government, for its part, should leverage its spending and convening powers—including the proposed Pan-Canadian Grid Council—to encourage greater coordination and integration of provincial and territorial systems.

Federal climate policies can help motivate greater integration, and federal convening and financial support can help incentivize it. But, ultimately, it is up to provinces and territories how much they choose to coordinate and integrate with their neighbours. As we discussed above, integration offers a cost-effective pathway for aligning Canadian electricity systems with net zero, so provinces should work to tap its considerable—and shared—benefits.

3.3 Tying provincial, territorial, and federal actions together

Our research finds that meaningful policy action across the four challenges requires electric federalism: coherent policy action from federal, provincial, and territorial governments that is capable of driving Canadian electricity systems toward alignment with net zero (see Figure H).
While there is a path forward where each order of government acts independently within its respective jurisdiction to implement the recommendations above, relying on the uncoordinated, independent initiative of each order of government means some critical policy actions might be slow to materialize. This risks putting the achievement of broader, longer-term climate targets in jeopardy, since resilient, cost-effective, non-emitting electricity systems are essential for enabling energy end-use electrification—a central component of every possible pathway to reaching net zero emissions (Dion et al. 2021).
Below, we discuss a potential coordinated approach that sees the federal government supporting and accelerating change while also respecting provincial and territorial jurisdiction over electricity.

E. The federal government should consider offering sustained, predictable financial support to provinces and territories to accelerate electricity system transformations, in exchange for certain high-level conditions being met

Such agreements would attach a limited number of high-level conditions to this potential financial support that tie together many of the recommendations above. These conditions include:

- updating the mandates of key provincial and territorial institutions,
- developing comprehensive energy plans and independent pathway assessments, and
- participating in inter-jurisdictional working groups, such as the proposed Grid Council.

Federal support would be conditional on provinces and territories developing these specific policies, plans, and assessments, but their content would be entirely at those governments’ discretion. As long as such efforts were focused on developing a net zero energy system in the province or territory and provided sufficient detail, the federal government would leave provincial and territorial governments and institutions to determine how they envision their electricity systems aligning with net zero. With the above conditions in place, federal support would not have to be tied to any particular investment type, technology, or measure, but only to electricity system investment in general.

Provinces and territories, for their part, would have access to—and control over—federal funds that could help reduce pressure (or perceived pressure) on electricity rates. This is a significant benefit that could greatly facilitate electricity sector transformation. Without it, pressure from households and businesses to keep electricity affordable could risk delaying the provincial and territorial policy changes and investments required to modernize electricity systems and align them with net zero.

This kind of approach can offer a way for the federal government to enable and accelerate the transformation of provincial and territorial electricity systems in line with net zero, and in a way that makes sense
in the Canadian federation. If the federal government is serious about achieving net zero in the electricity sector by 2035 and in the economy as a whole by 2050, it should begin exploring this approach immediately and consider making it a key plank of its Budget 2023.
ANNEX

Stakeholder consultations

We wish to acknowledge the input and guidance we received during our engagement with a broad range of stakeholders, including:

<table>
<thead>
<tr>
<th>Alberta Innovates</th>
<th>Canadian Renewable Energy Association</th>
<th>Energy and Materials Research Group at Simon Fraser University</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alberta Utilities Commission</td>
<td>Capital Power Corporation</td>
<td>ENMAX</td>
</tr>
<tr>
<td>Algonquin Power & Utilities Corp.</td>
<td>Charlottetown Chamber of Commerce</td>
<td>ESMIA Consultants</td>
</tr>
<tr>
<td>AltaLink</td>
<td>City of Charlottetown</td>
<td>Environment and Climate Change Canada</td>
</tr>
<tr>
<td>Asia Pacific Economic Corporation</td>
<td>City of Halifax</td>
<td>Federation of Prince Edward Island Municipalties</td>
</tr>
<tr>
<td>Association of Municipalities of Ontario</td>
<td>City of Medicine Hat</td>
<td>First Nations Power Authority</td>
</tr>
<tr>
<td>Association québécoise pour l'énergie renouvelable</td>
<td>City of Saskatoon</td>
<td>Fortis BC</td>
</tr>
<tr>
<td>ATCO</td>
<td>City of St. John's</td>
<td>General Electric Canada</td>
</tr>
<tr>
<td>Atlantic Canada Opportunities Agency</td>
<td>City of Toronto</td>
<td>Government of Alberta</td>
</tr>
<tr>
<td>Atlantic Chamber of Commerce</td>
<td>City of Vancouver</td>
<td>Government of British Columbia</td>
</tr>
<tr>
<td>Atlantic Policy Congress of First Nations Chiefs Secretariat</td>
<td>City of Winnipeg</td>
<td>Government of Manitoba</td>
</tr>
<tr>
<td>Atlantic Provinces Economic Council</td>
<td>Clean Energy BC</td>
<td>Government of New Brunswick</td>
</tr>
<tr>
<td>Atlantica Center for Energy</td>
<td>Clean Energy Canada</td>
<td>Government of Newfoundland and Labrador</td>
</tr>
<tr>
<td>Baffin Regional Chamber of Commerce</td>
<td>Clean Foundation</td>
<td>Government of Northwest Territories</td>
</tr>
<tr>
<td>BC Hydro</td>
<td>Climate Change Connection</td>
<td>Government of Nova Scotia</td>
</tr>
<tr>
<td>British Columbia Utilities Commission</td>
<td>Community Energy Association</td>
<td>Government of Nunavut</td>
</tr>
<tr>
<td>Business Council of British Columbia</td>
<td>Conboy Advisory Services</td>
<td>Government of Ontario</td>
</tr>
<tr>
<td>C.D. Howe Institute</td>
<td>Council of Yukon First Nations</td>
<td>Government of Prince Edward Island</td>
</tr>
<tr>
<td>CAMPUT: Canada’s Utility and Energy Regulators</td>
<td>Counsel Public Affairs</td>
<td>Government of Quebec</td>
</tr>
<tr>
<td>Canada Energy Regulator</td>
<td>Cowessess Ventures</td>
<td>Government of Saskatchewan</td>
</tr>
<tr>
<td>Canada Grid</td>
<td>David Suzuki Foundation</td>
<td>Government of Yukon</td>
</tr>
<tr>
<td>Canadian German Chamber of Industry and Commerce</td>
<td>Delphi Group</td>
<td>Greengate Power</td>
</tr>
<tr>
<td>Canadian Nuclear Association</td>
<td>Dunskey Energy Consulting</td>
<td>Heartland Generation</td>
</tr>
<tr>
<td></td>
<td>Ecology Action Centre</td>
<td>Heritage Gas</td>
</tr>
<tr>
<td></td>
<td>Ecotrust Canada</td>
<td>Hydro One</td>
</tr>
<tr>
<td></td>
<td>Efficiency Canada</td>
<td>Hydro Quebec</td>
</tr>
<tr>
<td></td>
<td>Efficiency One</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electric Power Research Institute</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electricity Canada</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Emissions Reduction Alberta</td>
<td></td>
</tr>
</tbody>
</table>
We also wish to acknowledge the valuable input provided by individual experts, academics, and practitioners.
Acknowledgments

STAFF AUTHORS
Jason Dion—Mitigation Research Director
Caroline Lee—Senior Research Associate
Anna Kanduth—Senior Research Associate
Christiana Guertin—Research Associate
Dale Beugin—Vice President, Research and Analysis

STAFF CONTRIBUTORS
David Mitchell—Senior Communications Specialist

PROJECT ADVISORS
Blake Shaffer—University of Calgary
Dan Woynillowicz—Polaris Strategy
Pierre-Olivier Pineau—HEC Montréal

EXPERT PANELISTS
Louis Beaumier—Directeur exécutif, Institut de l’énergie Trottier
Annie Chaloux—Associate Professor, Applied Political Studies, University of Sherbrooke
Kathryn Harrison—Professor, Political Science, University of British Columbia
Mark Jaccard—Director and Distinguished Professor, School of Resource and Environmental Management, Simon Fraser University
David Layzell—Director, Canadian Energy Systems Analysis Research, University of Calgary
Justin Leroux—Associate Professor, Economics, HEC Montreal
Corey Mattie—Advisory Council Member, Indigenous Clean Energy
James Meadowcroft—Professor, Political Science and Public Policy, Carleton University
Juan Moreno-Cruz—Associate Professor, School of Environment, Enterprise and Development, University of Waterloo
Nancy Olewiler—Professor, School of Public Policy, Simon Fraser University
Maria Panezi—Assistant Professor, University of New Brunswick Law
Nicholas Rivers—Canadian Research Chair, Climate and Energy Policy, University of Ottawa Roger Street, Research Associate, Environmental Change Institute, University of Oxford
Roger Street—Research Associate, Environmental Change Institute, University of Oxford
Jennifer Winter—Associate Professor, Department of Economics; Scientific Director, Energy and Environmental Policy Research Division, University of Calgary

EXTERNAL REVIEWERS AND INPUTS
Mayaz Alam—GE Canada
John Bistline—Electric Power Research Institute
Cynthia Chaplin—Canada’s Energy and Utility Regulators (CAMPUT)
Paula Conboy—Conboy Advisory Services
Ben Dachis—C.D. Howe Institute
Ganesh Doluweera—Canada Energy Regulator
Philip Duguay—Canada Grid
Leighton Gall—Indigenous Clean Energy
Nicholas Gall—Canadian Renewable Energy Association
Tom Green—David Suzuki Foundation
Brad Griffin—Canadian Energy and Emissions Data Centre
Brendan Haley—Efficiency Canada
Ahmed Hanafy—Dunsky
Sara Hastings-Simon—University of Calgary
Chris Henderson—Indigenous Clean Energy
Alex Hill—Dunsky
Dave Lovekin—Pembina Institute
Julia McNally—Independent Electricity System Operator
Madeleine McPherson—University of Victoria
Terri Lynn Morrison—Indigenous Clean Energy
Normand Mousseau—Institut de l’énergie Trottier
Michael Powell—Electricity Canada
Christopher Roney—Electric Power Research Institute
Stephen Thomas—David Suzuki Foundation
Chris Turner—Author and energy communications strategist
Kathleen Vaillancourt—Energy Super Modelers and International Analysts
Kristen Van de Biezenbos—University of Calgary

PRODUCTION SUPPORT
Design and visualizations by Voilà: | chezVoila.com
Translation: Edgar
References

McCarthy, Shawn. 2022. Nordic Co-operation, Canadian Provincialism. Canadian Climate Institute (formerly Canadian Institute for Climate

